3 research outputs found

    M5' and Mars Based Prediction Models for Properties of Self-Compacting Concrete Containing Fly Ash

    Get PDF
    The main purpose of this paper is to predict the properties (mechanical and rheological) of the self-compacting concrete (SCC) containing fly ash as cement replacement by using two decision tree algorithms: M5′ and Multivariate adaptive regression splines (Mars). The M5′ algorithm as a rule based method is used to develop new practical equations while the MARS algorithm besides its high predictive ability is used to determine the most important parameters. To achieve this purpose, a data set containing 114 data points related to effective parameters affect on SSC properties is used. A gamma test is employed to determine the most effective parameters in prediction of the compressive strength at 28 days, the V-funnel time, the slump flow, and the L-box ratio of SCC. The results from this study suggests that tree based models perform remarkably well in predicting the properties of the self-compacting concrete containing fly ash as cement replacement.&nbsp

    Incorporating Deep Bagging Ensemble Method as a Surrogate Model for Simulating Hyper-Concentrated Sediment-Laden Flows

    Get PDF
    Macroscale and mesoscale simulations of hyper-concentrated sediment-laden flows rely on robust couplings of the Reynolds-Averaged Navier-Stokes equations in conjunction with the shear-stress transport k-ω turbulence model. Also other closure laws for modeling the momentum transfer between the fluid and dispersed particles phase are applied. A numerical framework is developed to couple and solve the various algebraic and Partial Differential Equations (PDEs) based on the Euler-Euler method. A 3D high-fidelity simulation of sediment transport based on two-phase modeling approaches (i.e., Euler-Lagrange and Euler-Euler models) can be computationally prohibitive. A deep bagging ensemble method based on Regression Tree and Model Tree approaches is incorporated into the coupling procedure of the ten PDEs involved in the problem to improve computational efficiency. The performance of the surrogate model was also compared with two traditional surrogate models, i.e., Artificial Neural Network and Kriging meta-modeling. The CFD and surrogate-based models were validated for horizontal transport of cuttings created during an offshore drilling process. In particular, during the hole cleaning procedure, it was challenging to simulate the two-phase flow of the cuttings and non-Newtonian drilling fluid due to the complex interactions between fluid-particle, particle-particle, and particle-wall. Therefore, a four way coupling method was utilized to consider the interdependency of motions between two phases. The values of sediment and fluid concentrations, the velocities of both phases, and pressure loss estimated by the surrogate models were compared with the results of CFD simulations and experimental investigations. The results indicate that the proposed hybrid CFD-surrogate model is capable of providing physical insights into the dynamics of cutting transport, and the resulting computational observations are in line with the relevant CFD simulations and experimental investigations

    Monitoring Mesoscale to Submesoscale Processes in Large Lakes with Sentinel-1 SAR Imagery: The Case of Lake Geneva

    No full text
    As in oceans, large-scale coherent circulations such as gyres and eddies are ubiquitous features in large lakes that are subject to the Coriolis force. They play a crucial role in the horizontal and vertical distribution of biological, chemical and physical parameters that can affect water quality. In order to make coherent circulation patterns evident, representative field measurements of near-surface currents have to be taken. This, unfortunately, is difficult due to the high spatial and temporal variability of gyres/eddies. As a result, few complete field observations of coherent circulation in oceans/lakes have been reported. With the advent of high-resolution satellite imagery, the potential to unravel and improve the understanding of mesoscale and submesoscale processes has substantially increased. Features in the satellite images, however, must be verified by field measurements and numerical simulations. In the present study, Sentinel-1 SAR satellite imagery was used to detect gyres/eddies in a large lake (Lake Geneva). Comparing SAR images with realistic high-resolution numerical model results and in situ observations allowed for identification of distinct signatures of mesoscale gyres, which can be revealed through submesoscale current patterns. Under low wind conditions, cyclonic gyres manifest themselves in SAR images either through biogenic slicks that are entrained in submesoscale and mesoscale currents, or by pelagic upwelling that appears as smooth, dark elliptical areas in their centers. This unique combination of simultaneous SAR imagery, three-dimensional numerical simulations and field observations confirmed that SAR imagery can provide valuable insights into the spatial scales of thus far unresolved mesoscale and submesoscale processes in a lake. Understanding these processes is required for developing effective lake management concepts
    corecore